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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 2887 

ON THE STABILITY OF THE LAMINAR MIXING REGION 

BETWEEN TWO PARALLEL STREAMS IN A GAS 

By C. C. Lin 

SUMMARY 

The stability of the mixing of two streams was studied "both for 
the interest in the problem and for clarifying certain points in the 
basic stability theory. It is shown that, when the relative speed of 
the two parallel streams exceeds the sum of their velocities of sound, 
subsonic oscillations cannot occur and the mixing region may be expected 
to be stable with respect to small disturbances. It is further shown 
that, when viscosity and heat conductivity are neglected, if the flow 
can execute a small neutral subsonic oscillation of finite wave length, 
it can also execute self-excited oscillations of longer wave lengths 
and damped oscillations of shorter wave lengths. 

Rigorous developments of the mathematical theory of asymptotic 
solutions confirm previous methods of solution of the stability equa- 
tions in a compressible fluid. This theory also shows that, at high 
Reynolds numbers, the damped oscillations in a strictly parallel main 
flow have a structure similar to that of the vorticity field in fully 
developed turbulent flow. 

Sample calculations are also included exhibiting various quantita- 
tive properties of these small oscillations. 

INTRODUCTION 

The mixing of two parallel streams of gas occurs in a number of 
cases. An interesting example is furnished by the slip stream in a 
three-shock configuration. It has long been suggested that such laminar 
mixing zones could, at sufficiently high speeds, be stable with respect 
to small disturbances although they are known to be very unstable at low 
speeds. The purpose of the present investigation is to find out some 
of these stability characteristics. Apart from the development of the 
general theory, there are included the calculations of the neutral and 
unstable oscillations, the extent of the amplification, and other related 
properties. 
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The basic equations for the study of small disturbances in the 
laminar boundary layer of gases have been given in reference 1. However, 
the development of the theory there has specific reference to the case 
of a layer near a solid boundary. As pointed out in references 2 and 3, 
the stability theory for a mixing zone in an incompressible fluid dif- 
fers from that for a layer near a solid boundary in that solutions of 
the exponential type are unimportant. This leads to the conclusion that 
the effects of viscosity and heat conduction are negligible, except at 
very low Reynolds numbers, in determining the characteristics of the 
oscillations. To confirm this point, a rigorous mathematical theory of 
asymptotic solutions was developed for the compressible case similar to 
that indicated in reference k  for the incompressible case. In view of 
the mathematical interest involved, it was decided that this basic part 
of the present investigation would be published separately in mathematical 
journals (see references 5 and 6), and only the main results and their 
physical significance will be presented here. 

As in the case of an incompressible fluid, the "inviscid" case is 
expected to be characteristic of the behavior of the disturbances at 
moderately large Reynolds numbers. Most of the studies are, therefore, 
made in the inviscid case. However, the interpretation of the inviscid 
case must be subjected to the same care as in the incompressible case; 
that is, in the case of damped disturbances, the differential equation 
of the inviscid flow may not be regarded as valid throughout the real 
axis. There is a finite viscous region even in the limit of vanishing 
viscosity. The complex conjugate of the amplified disturbance is cer- 
tainly a solution of the inviscid equation, but it is not a limiting 
solution of the complete viscous equation. This behavior of the inviscid 
solution reminds one of the vorticity structure of fully developed tur- 
bulent flow as found by Batchelor and Townsend (reference 7). 

The nonexistence of subsonic disturbances is usually associated 
with the stability of the parallel flow. There seems to be some basis 
for doing this, although the role of supersonic disturbances has never 
been fully clarified. It is easy to see that, for certain combinations 
of the properties of the two streams, it is impossible to have a sub- 
sonic disturbance relative to both. Under such conditions, one may 
expect stability. These conditions for stability are developed herein 
and are expected to hold, irrespective of the viscous effects. 

Applying the theory of stability in the inviscid case, one can 
further narrow down the possible range of instability. This will depend 
upon the velocity and temperature distributions in the shear zone. In 
the present work, calculations are made for gases with Prandtl number 
equal to unity. Although the condition of equal total enthalpy in the 
two streams Is also used, it is shown that this restriction can be 
immediately removed by considering a moving observer. It is found 
that the condition of stability thus found does not differ very much 
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from that found above from general considerations. Thus, it may he 
surmised that the exact distributions of temperature and velocity have 
only a secondary influence on the stability characteristics in the 
mixing zone. Thus, the approximations used in the present calculations 
of the basic velocity and temperature distributions cannot influence 
the final results to any appreciahle extent. 

The neutral disturbances are of two kinds:  (l) A steady deviation 
and (2) an oscillation of finite wave length. Thus, there are two 
branches of the neutral curve at infinite Reynolds numbers. They may 
be expected to join together at low Reynolds numbers enclosing a region 
of instability. Calculations of neutral and amplified oscillations are 
carried out in a number of cases with one stream at rest. 

This investigation, carried out at the Massachusetts Institute of 
Technology, was sponsored by and conducted with the financial assistance 
of the National Advisory Committee for Aeronautics. The author is 
indebted to Mr. D. W. Dunn for his Valuable suggestions and help in the 
preparation of the final version of the report and to Miss Diana Mason 
and Mr. W. V. Caldwell for their help in making the numerical calculations. 

STEADY FLOW IN THE LAMINAR LAYER BETWEEN 

TWO PARALLEL STREAMS 

The basic steady flow under discussion is a "boundary-layer flow with 
no body forces and no pressure gradient. The basic equations are (see 
list of symbols in the appendix): 

,*u* ^+p*v^ ^ = Al*^\ (1) 
öx*      %*  äy*\ by*) 

JL(p*u*) + JL(p*v*) = 0 (2) 
dx*       by* 

<" &&) ♦ - 5^*) - £(>* P) ♦ KtQ2       <3> 
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the pressure being a constant throughout the field.  In the case of a 
homogeneous incompressible fluid, with the streams at the same tempera- 
ture, the temperature may be taken as constant throughout the field, 
and the first two equations can be solved for the velocity distribu- 
tions u*(x*,y*) and v*(x*,y*). In the case of a compressible gas, 
the integration has to be carried out for individual cases. However, 
if the Prandtl number CpH*/k* is equal to unity, it is known that 

there is a quadratic relation of the type 

c^T* + - u*2 = A + Bu* w 

between the temperature and the velocity, and one is again essentially 
dealing with two distributions u*(x*,y*) and v*(x*,y*). Indeed, the 
constants A and B are given in terms of the conditions in the. 
parallel streams as follows: 

B = KU2 + Ul) + Cp(T2 " Tl)/(U2 - Ul) 

2 -1-2 - -p(
TlU2 " T2Ul)/(U2 " Ul) A = - ± U.Uo + cT 

r (5) 

If the total enthalpy in the two streams 1 and 2 is the same, that is, 
if 

1 TT 2 
p*i + 2 ui - V 2 

1 TT 2 To + =■ U. (6) 

then B = 0, and the total enthalpy is constant throughout the whole field: 

,T* + i u *2 = C (7) 
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This is a particularly simple case, to which, however, all other cases 
can he easily reduced. This is done by rewriting equation (k)  into 
the form 

cpT* + i(u* - B)
2 = A + B2/2 .(8) 

One need only consider an observer moving with the speed B and con- 
sider the relative velocity u* - B. Thus, the solution for general 
specified values of U^T^ and U2,T2 can be derived from the iso- 

energetic solution with boundary conditions Uj_ - B,TQ_ and U2 - B,T2 

by simply adding the constant B to the u*-component .of the velocity.1 

In the following discussions, isoenergetic basic solutions.will be 
referred to often; however, it should be kept in mind that by the con- 
sideration of a moving observer the general case may be obtained.' This 
transformation is not restricted to the steady flow but applies to the 
consideration of the disturbances as well. Thus, if all the cases of 
constant total enthalpy are calculated, all the other cases are also 
known. 

So far, the viscosity coefficient may depend on the absolute tem- 
perature in any manner. If there is direct proportionality of these 
quantities, the solution in the compressible case can be expressed in 
terms of that in the incompressible case. These relations are well- 
known and, in the following discussion, only the results relevant to 
this case will be given. 

Incompressible. Case 

For the incompressible case: 

u* = Uxf (TI) 

v* = u-L-jjj- ^v-Ju^nf - f) 
(9) 

lit is to be noticed that in certain cases with T2/T^ < 1 the 
boundary value U2 - B for the corresponding isoenergetic problem may 
be. negative while Ui - B is still positive. Thus the isoenergetic 
problem may not be physically significant. However, for the purposes 
of theoretical analysis, this point is not important. 
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where 

Ti = y^vix*^! (10) 

and f(TJ)  satisfies the differential equation 

ff " + 2f " ' = 0 (11) 

with the conditions 

f'(n) —> 1 as TJ —-> «> 

f *(T|) —> -^ as T|   > -°° 
ul 

(12) 

A third condition is arbitrary up to a translation along the rj-axis. 

For a typical scale, the momentum-boundary-layer thickness 6*    may 
be introduced, which is defined by 

/oo . 

p*^ - u*)(u* - U2) dy* (13) 

Then 

0 = 
0* 

fl**|U] 
[l -  f (TJ)] f'(ri)   - 

Un 

dT] (i*0 

for an incompressible fluid. It will be seen later that the same for- 
mulas apply for a compressible fluid in the isoenergetic case. 

Calculations made by Gö'rtler (reference 8) for the turbulent mixing 
region can be easily adopted for the purpose at hand.  There is only a 



NACA TN 2887 

slight difference in the method of representation. To convert his 
function F'(|) to the notation of this report, the following rela- 
tions should "be used 

Pr f (n) =-££_F'(s) 
1 + X 

TJ = 2 \|l + X £ 

(15a) 

where 

X  = 
Ul -Ü2 

Vi +.U2 

(15b) 

The converted results are given in table I and figure 1. 

Compressible Case 

For the compressible case with constant total enthalpy, u* « T*, 
where 

u* = u1f(0 (16) 

and 

T* = T, (l + 2_1 i^-^i (17) 

with 

-rt-4 i^.f^ildt' (18) 

where 

1) = yWv^/u! 
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The momentum thickness 0* can be defined by the same equation (equa- 
tion (13)) and can be shown to have the same value (equation (lA)) in 

dimensionless form. Velocity and temperature distributions in the case 
U2 = 0 have been calculated for several Mach numbers; these are tabu- 
lated in table II and plotted in figure 2. 

A GENERAL RESTRICTION FOR EXISTENCE OF 

NEUTRAL SUBSONIC DISTURBANCES 

Before going into the general theory of stability, a preliminary 
discussion of the stability of the mixing zone will be given. It will 
be found below that the results thus obtained give quite an adequate 
description of the general dependence of the stability of the mixing 
zone on the Mach numbers of the streams. It will be shown that, if 
the average Mach number M   of the relative motion (defined by equa- 
tions (25) and (26)) exceeds the value 2, subsonic disturbances in the 
sense of reference 1 cannot exist, and the mixing zone may be expected 
to be stable. 

Consider two parallel streams at speeds U]_ and U2, tempera- 

tures T-,  and T2, and Mach numbers M^_ and M2- For def initeness, 

take U]_ - U2 > 0.  Consider an observer moving with the speed U2. 

Then the streams appear to have speeds U]_ - U2 and 0, while their 

temperatures are obviously not changed. If 

c' = c - U2 (19) 

denotes the speed (relative to the moving observer) of a wavy motion 
propagating in the direction of the stream (c' positive or negative), 
then the conditions for subsonic disturbances are 

|(UX - U2) - c'| < a-L (20) 

a2 (21) 

where a-, and a2 are the velocities of sound in the streams. It is 
clear that subsonic disturbances can always exist if U-j_ - U2 is less 
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than a-]_. For U-|_ - U2 > a-^,  condition (20) can be satisfied only 
with c' > 0.  Thus 

0 < c' < &2,  that is,. 0 < c - U2 < a2 (22) 

Now, note that condition (20) is actually , 

|U1 - c| < al 

and hence 

-ax < Ux - c < ax (23) 

Adding relations (22) and (23), it is found that 

ul - u2 < al + a2 (2l0 

is a necessary condition for the existence of subsonic disturbances. 
By introducing the average velocity of sound 

ä = Ka-L + a2) (25) 

and the average Mach number of relative motion 

' : i- 

M = (U-L - U2)/ä (26) 

defined with respect to this average sound velocity, it may be concluded 
that subsonic disturbances cannot exist (and the mixing zone may be 
expected to be stable) if the average Mach number M of the relative 
motion exceeds the value 2, as stated at the beginning of this section. 
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In terms of the Mach numbers of the two streams, condition (2k) 
states that if 

\ > 1 + fizfiii1 + Mz) (27) 

Subsonic disturbances cannot exist, and the motion is stable.  (See 
fig- 3.) 

In the case of constant total enthalpy, the temperature ratio 
To/Tn  can be expressed as 

T2 
1 + (7 - l)M1

2/2 

1  1 + (7 - l)Mg2/2 

Then condition (27) becomes 

x     2/_1/2 
-)M!7" 

M1  >1 + 

The critical condition is 

1 + (7 - 1) 

1 + (7 - l)M2
2/2 

(l + M2) 

(28) 

(29) 

Mj_ = 1 + 
1 + (7  - 1)^2 

1 + (7 - l)M22/2 

l/2 

(l + M2) 

Removing the square root, 

1 + (7 - l)Mx
2/2      ^Ml - l); 

1 + (7  -  l)M2
2/2       (M2 + tf 

(30) 

This form suggests an obvious solution, M^_ = -Mg. 

can then be easily obtained as 

Another solution 

M- 
(3 - 7)M2 + k 

1  (3 - 7)   -  2(7 - 1)M2 
(3D 
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By substituting in equation (30), Mj_ = -M2 is found to "be an extra- 

neous solution. The only solution of equation (30) is then given by 
equation (31). 

Thus the flov is stable if 

(3 - 7)M2 + k ' 
Mi>: :    ' (32) 

(3 - 7) - 2(7 - 1)M2 

The curve for equation (31) is shown in figure k,  where the region to 
the left of curve A is the region of possible instability. Note the 
symmetry with respect to the line Uj_  = -M2, corresponding to a change 

of the positive direction of the x-axis in the physical problem. The 
line M-j_ = M2 is drawn to take care of the condition U-j_ - U2 > 0, 

since U^ = U2 when M-|_ = M2. The asymptotes of the curve for equa- 

tion (31) are 

M2 w (3 - 7)/2(7 - 1) (33) 

and 

Mi = -(3 •- 7)/2(7 - 1) (34) 

With 7 = 1.4, these values are ±2. The intercepts are 

Mx = k/(3 - 7) (35) 

and 

M2 = -V(3 - 7) (36) 

With 7 = l.k,  these values are +2.5. (Cf. reference 9.) 
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GENERAL STUDY OF SMALL DISTURBANCES IN A NEARLY PARALLEL 

FLOW FIELD IN A COMPRESSIBLE FLUID 

The general theory of a small disturbance in a field of nearly par- 
allel flow of a gas has been developed in reference 1. The rigorous 
mathematical proof and improvement of the theory are given in detail in 
references 5 and 6. In this report, merely the main conclusions and 
their physical interpretations are outlined without going into the 
details. Applications of the theory to the specific case at hand will 
be discussed in some detail. 

Consider a nearly parallel stream with dimensionless velocity and 
temperature distributions w(y) and T(y). The neglect of the depend- 
ence of these quantities on x and the omission of the y-component of 
the basic flow can be justified by detailed investigations. The line- 
arized differential equations for small disturbances then possess solu- 
tions of the type 

u' = Re[f(y)ela(x-Ct^| 

v' = Re|a)6(y)eia(x-ct3 

p- = Ref(y)eia(x-Ctj] 

p- =Ref(y)eia(x-ctl] 

T' =Reje(y)ela(x-ctl] 

> (37) 

where u', v1,  p', p', and T' are the perturbations of the two com- 
ponents of velocity, the density, the pressure, and the temperature, all 
in a suitably defined dimensionless form. The constants a and c are, 
respectively, the real wave number and the complex wave speed. 

The differential equations for the amplitude functions f(y), 0(y), 
Hy),     rt(y) >  and- 0(y)  are rather complicated.  However, if the effects 
of viscosity and heat conduction are neglected, they become a relatively 
simple system, which can be reduced to the following single differential 
equation for 0(y): 
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a (w - c)0' - w'0 

T - M-]_2(w - c)2_ 

a2(w -  c)0 
(38) 

All the other variables can be expressea in terms of 0 ana 0' as 
follows: 

f = -i ]yr(w - c)w'0 - T0' T - M' 
!(v-c)5 

r = ik0' + if) + p!0 /(w - c) 

it = i7M2p i(w - c)f + w'0] 

0 = T(ä/P ~ r/p) 

(39) 

The bounaary conaitions are that the aisturbance shouia be bounaea 
as y —y ±00. 

The inviscia system wouia have given a well-äefinea characteristic- 
value problem if it were not for the fact that aifferential equation (38) 
has a singularity at the point y = yc where w(y) = c.  This singu- 
larity aisappears only when a(pw')/ay = 0 at the same point.  Other- 
wise, a solution of equation' (38) has a logarithmic singularity at 
y = yc ana the characteristic-value problem associatea with this equa- 

tion becomes inaeterminate until the proper branch of the solution is 
aeterminea. 

The aetermination of the proper branch of the solution ana its 
associatea physical interpretation is one of the most aelicate points 
in the theory of hyaroaynamic stability. The mathematical analysis of 
the solutions of the complete viscous equations ana their limiting solu- 
tions will be maae first before aiscussing their physical interpretation. 

The complete system of viscous equations can be shown to be equiva- 
lent to a system of six linear equations of the first oraer in six 
unknowns. Thus, there are six inaepenaent solutions. These solutions 
have been formally obtainea as asymptotic series in reference 1,  ana 
their rigorous mathematical investigation has been carriea out in 
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references 5 and 6. It is found that two of the six solutions can be 
expressed in asymptotic series of the form 

f = f(0) + i_ f(D + . . . 
X2 

0 = 0(0) + J_ 0(1) + 
X2 

(ho) 

where f\   > ,    0^°), . .   . are the inviscid solutions satisfying equa- 

tions (38) and (39) and A.2 = aR, where R is the Reynolds number based 
on the thickness of the mixing region. Thus, the formal limit of equa- 
tions (kO)  does approach the inviscid solution, but a complete study of 
these equations also carries the knowledge of the proper branch to be 
used. 

Four other solutions of the complete system of viscous equations 
are of the form 

f = F expfxQi) 

0 = $  exp(XQi) 

i = 1,   2,  3,  k (hi) 

where 

Ql = -Q2 = w^ c)  dy 

> 

% = -% =J    \|-jr (w -c) dy 

^c 

(te) 

and F and $ can be expressed as power series of X,   involving only 
a finite number of positive powers. 
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In the establishment of these asymptotic solutions, it is shown that 
the lines Re^Q-J = .0, Re(Q3) =0, and Re(Qx - Q3) = 0 are of interest. 

The geometry of these lines relative to the point yc (where w = c)' and 

the real axis of the y-plane are shown in figure 5. ' There are asymptotic 
solutions expressed in equations (kO)  and (kl)  which maintain the same 
analytical expression on the two sides of the dotted lines. However, in 
crossing the solid lines, they generally change their behavior. Thus, 
the following conclusion may be drawn:  The proper, branch of the multiple- 
valued asymptotic solutions is obtained by taking a path in the complex 
y-plane below the point y = yc (in this case w(y)  is monotonically 

increasing along the real axis). 

This is the branch taken in reference 1. By examining the behavior 
of solutions of the type given in equations (li-l), it can be easily shown 
that they diverge for either positive or negative large values of y. 
These solutions should, therefore, be rejected in the present problem. 
The effect of viscosity is then to be obtained through solutions of the 
form of equations (k-0) . 

GENERAL STABILITY CHARACTERISTICS IN 

THE INVISCID CASE 

Much of the discussion of the inviscid case in reference 1 applies 
to the present case. However, as noted above, in the present problem, 
the possibility can be more readily realized that subsonic disturbances 
may not exist at all, and that the motion may then be expected to be 
completely stable with respect to small disturbances. Another main 
difference lies in the "steady" deviation, that is, solutions.of equa- 
tion (38) with a = 0.  In the present discussion, the general line of 
discussion in reference 1 will be followed.  However, the difference in 
the boundary conditions often causes a difference in the method of 
analysis. The arguments are, therefore, presented in some detail. Also, 
it will be shown that disturbances having wave-lengths slightly longer 
than that of the neutral subsonic disturbances of finite wave length 
are unstable while those with slightly shorter wave lengths are the 
stable ones. This conclusion also applies to the case of the boundary 
layer, but it was not obtained in reference 1. The analysis also leads 
to an approximate estimation of the dependence of amplification on wave 
length.  This will be used for the calculation of the amplification of 
the disturbances in the section "Self-Excited Oscillations." 

Some general analytical properties of the solutions of equation (38) 
will be first summarized, particularly for the case of subsonic disturb- 
ances . In this case, 
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T - Mx
2(w - c)2 > 0 (43) 

for both free streams. For large positive values of y, equation (38) 
may "be approximated by 

0" - ßx
20 = 0 with ß^ = ct2|T- Mx

2(l - c)^| (MO 

For large negative values of y, it may be approximated by 

0'» _ ß2
20 = 0 with ß2

2 = a2 M- 2/U2 (45) 

Since both ßx
2 and ß2

2 are positive, the solution 0(y)  is exponen- 

tial in nature for large values of y in the case of subsonic disturb- 
ances, with the exception of the case a = 0.  In that case, two inde- 
pendent solutions of equation (38) are 

w (46) 

and 

$0 = (w - c) 
(w - c)' 

M, ay (47) 

The first solution is bounded while the second varies: linearly with y 
for large values of y. 

For any value of c, the bounded solution (equation (46)) corre- 
sponds to no disturbance at infinity. In fact, for a = 0, the disturb- 
ance v'  is identically zero, by equation (37)- The other components 
of the disturbance are given by equations (39), and it can be easily 
verified that they all vanish at large distances. 

It can be shown from the general nature of the temperature and 
velocity distributions that condition (k-3)  holds throughout the mixing 
zone if it holds in both free streams. It is then obvious that 
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equation (38) has a singularity only at w - c = 0. Actually, even 

if T - M1^(w - e) =0, it only gives rise to an apparent singularity. 

Analysis of the solution in the neighborhood of the point y = yc 
(where w = c) gives the following two solutions: 

0i = (y - yc)ei(y - yc) 

02 = s2(y - yc) + Kh lQSe (y - yc) 

(hQ) 

where 

K = 

Uc')
3 dyU, <Jc 

.0*9) 

and g-,  and g£ are power series in (y - yc) with g^(0) = v ' '^ 0 

and go(0) = ^c/wc' ^ ^* -^e ProPer "branch of the logarithmic function 

is to he taken in accordance with the method discussed in the preceding 
section. 

For real values of c, it can be shown that the Reynolds shear 
stress .   ' ■ 

T = -pu'v' (50) 

is a constant except for a possible jump at y = y . 

jump is 

In fact, this 

■[T]B|«K(VC')
2
|0C|

2
/TC (51) 

when one passes from yc - 0 to yc + 0. 
ance with a ^ 0, the condition 

Thus, for a neutral disturb- 

must be satisfied, since T 

have any jump. 

K = 0 (52) 

0 for y —>- ±00 and, therefore, does not 
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Thus, for the existence of a subsonic disturbance, the quantity, 

_d/l dw\ = _d_/ dw\ 
dy\T dy^  dyV dyj (53) 

must vanish at some point in the field; furthermore, the corresponding 
value wq of w must be subsonic relative to "both streams; that is, 

M- 
1       U2/ X < vs < ^(l + 

Un Mc 
{5k) 

The above reasoning can be applied to the case of the boundary layer; 
a somewhat different argument was used in reference 1. A little" calcu- 
lation will show that, in general, condition (53) will be satisfied, 
although condition (5k)  may not.  If the latter is also satisfied, then 
there actually exists a subsonic disturbance with 
this, equation (38) is rewritten in the form 

c = wc To prove 

dyV f)-K>- (55) 

where 

h(y) = (T - Mx
2(w - c)2]"1 >0 

q(y) = _A_<Lh<^ 
w - c dy\ dyy 

V (56) 

With c w, s> q(y)  is regular all along the real axis. This is a 

characteristic-value problem for the parameter 
ated with the variational principle 

k = -a  and is associ- 

i€ ♦ ^ dy = 0 (57) 
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with 

f 
T dy = Constant (58) 

The least value for -a  is then given "by the minimum value of the 
ratio 

<iT+*f 2 (59) 

for all functions f(y) such that the integrals in this ratio are con- 
vergent. Now, it is necessary only to show that for certain functions 
the ratio of the integrals is negative. - 

In the choice of such a function, it is necessary for only the 
numerator in equation (59) to be convergent. The convergence of the 
integral in the denominator is immaterial, for one can always modify 
the function at sufficiently large values of |y| so that the denomi- 
nator becomes convergent without altering the sign of the numerator. 
To choose a function so that the integral 

r00 
I = /  (hf'2 + qf2) dy 

<J -oo 
(60) 

is negative, it is first noted that 

1 = 0 for f = w - c (61) 

This follows from the fact that JÖ = w ■-. c is a solution of equation (55) 
when a = 0. It can also "be directly verified. Obviously, the value of 
I is not changed if f is now changed to |w - cI. A further modifi- 
cation of the function would yield the desired result. In the neighbor- 
hood of yc, |w - c | is small, but w1  is finite. If in this neighbor- 
hood the function f(y) = |w - c) is replaced by a horizontal straight 
line, the integrand in equation (60) is certainly decreased (since | >0 
and a change in f'  causes a larger change in the integral than that 
in f), and the resultant integral is negative. This completes the proof 
desired. 
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Thus, the sufficiency of conditions (53) and (5i+) for the existence 
of subsonic disturbances is also established. Let the corresponding 
value of a be denoted by as. 

Next, it will be shown that for a slightly less than <xs the 

disturbances are unstable. To prove this the quantity (dc/dk)  will 

be calculated, and its imaginary part will be shown to be positive. 

Consider a characteristic function 0(y;k,c) of equation (55) 
corresponding to a given value of k. As c changes, k also changes. 
If equation (55) is differentiated with respect to k, the following 
equation is obtained 

qjÖ + — 0 + 
T 

j3_/öh d0^ 

dy\dc dy; dc dk      T 
(62) 

where 

0 = _ d0 
Ok 

d0 dc 
dc dk 

(63) 

Now, multiply equation (62) by 0, equation (55) by '$,  subtract the 
results, and then integrate with respect to y along a path in the com- 
plex plane which leads from y = -00 on the real axis to y = » on the 
real axis but passes below the point yc. The following equation is then 
obtained for dc/dk: 

dc 
dk dc \dy/   dc 

dy = 
T 

dy (64) 

So far equation (6k)   is general. Now, specialize to the case of 
the neutral disturbance in question. Most of the integration can then 
be carried out along the real axis, with real resultant values. However} 

the integral 

J = &1 *2 
dc 

T  dy (65) 
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must be evaluated along an indented path with a small detour below y , 

since dq/äc has a pole at that point. Calculations show that the 
imaginary part of J is 

^■"Wv)!|e-s) (66) 

if this quantity does not vanish. Indeed, this quantity can be seen 
to be negative. Thus, equation (6k)  yields a relation of the form 

— (P + iQ) = R > 0 
dk 

where Q.= Im( J). Thus, 

de     R 

dk  p2 + Q2 
(P - iQ) (67) 

has a positive imaginary part, as required. 

In the incompressible case, equation (6k)   reduces to 

dc /   w' 

&■   J-oo    (W - C)' 
0 äy =    02 dy (68) 

and the imaginary part of    dk/dc    is 

Im(dk/dc)   = Mc\vcA 2 v   '' ' wc f dy (69) 
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NEUTRAL OSCILLATIONS 

From the discussions of the last section, another limitation is 
imposed on the occurrence of neutral subsonic disturbances. Since the 
wave speed of the neutral disturbance must be equal to the flow speed 
ws at the point where 

cLyV <W 

subsonic disturbances cannot occur if the speed ws is supersonic rela- 

tive to either stream. Calculations of ws are made for the case of 
uniform total enthalpy. Instead of using equation (70) directly, it 
is found convenient to transform it into the form 

1 +  i w2 
(7 - 1)M]/ 

-1 
= 0 with if  = f(£)  and w = f»([;)    (71) 

where -ty    is the stream function, since the relation w(i|r) vis identical 
with that in the incompressible case. The results of these calculations 
are shown in table III. In comparing these values against condition (5k) 
it is found that the condition 

1 " ^ < V* 

is never violated, but the values of ws below the solid horizontal 
lines in the table are too high to satisfy the condition 

Wo < —(1 + — 3     M  M2 

Thus, for a given Mach number in the stream Mg, the Mach number Mj_ 
in the other stream can become so high that the speed of flow corre- 
sponding to condition (70) becomes supersonic relative to the slower 
free stream. Subsonic disturbances then cannot exist. 



NACA TN 2887 23 

The critical case of sonic disturbance is reached when 

Calculations for this'case are tabulated in table IV. The corresponding 
values of M]_ and Mg are plotted as curve B in figure 4 to mark the 
limit of stability. Only the region to the left of this curve can have 
subsonic disturbances.  It is seen that the condition is more restrictive 
than that obtained from general considerations alone. In particular, in 
the case where one stream is.at rest, the curve B shows that the flow . 
becomes completely stable at a free-stream Mach number of 1.7, in con- 
trast to the value 2.5 given by curve A. Since they are, however, not 
very much different, it may be surmised that the exact distributions of 
temperature and velocity in the mixing region may not be too important 
in determining the over-all stability characteristics. 

It may be recalled that the restriction to the case of constant 
total enthalpy can be immediately removed by considering a moving obser- 
ver. Thus,, for all cases with Prandtl'number equal to unity, it is nec- 
essary only to convert the values of the speeds U]_, U2, and ws 
involved. Condition (70) is not modified by the: reterence to a moving 
.observer.. • . . 

With the neutral wave speed thus determined, equation (55) can be 
integrated to give the amplitude of the oscillations.; For this purpose, 
it is necessary to find the proper value for a. This can be done by 
-several trials, with the first approximation given by the ratio of the. 
integrals in equation (59). The ratio will yield the characteristic 
value only when the function f(y)  is the characteristic function, b>ut 
it is known that any reasonable approximation to it will give a very 
close approximation to the characteristic value. 

Calculations of these neutral oscillations are carried out for 
several Mach numbers in one stream with the other at rest. These are 
given in table V and figure 6. 

SELF-EXCITED OSCILLATIONS 

The formulas given in the section "General Stability Characteristics 
in the Inviscid Case" have been used to calculate the characteristics of 
self-excited oscillations. It is found that 

|£ = 0.177 --"0.2091 da 
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for the case M]_ = 1 and 

— = 0.093 - 0.287i 
da 

for the incompressible case. The results are shown diagrammatically in 
figure 7. It is seen that the extent of amplification is fairly large. 
There is also indicated a decrease of amplification with increasing Mach 
number. 

It would be easy to calculate the amplitude function of these self- 
excited oscillations by using the characteristic values obtained above. 
This was not carried out because of limitations in time. 

NATURE OF OSCILLATIONS IN LIMIT OF 

INFINITE REYNOLDS NUMBER 

Calculations in the section "Neutral Oscillations" indicate that 
the neutral oscillation has quite a simple amplitude distribution. In 
fact, it does not show any node. The amplified disturbances are expected 
to show similar characteristics. The mathematical theory (references 5 
and 6), however, indicates that the damped oscillations behave in a much 
more complicated manner. It is concluded that there is always a finite 
viscous region in the interior of the fluid, no matter how large the 
Reynolds number may be. In fact, a minimum width of this region is 
determined. This has to do with the crossing of the solid lines by the 
real axis of y in figure 5. The solution in the part of the real axis 
between the solid lines shows exponential behavior - and therefore viscous 
nature - if the solution in the outside parts shows the inviscid behavior. 
This type of conclusion has been reached in reference 1. However, it 
was possible only to suggest that such viscous behavior would occur at 
the solid lines. The improved theory shows that it must occur through- 
out the region in between. It is important to note that the complex con- 
jugate of an amplified solution does not represent a damped oscillation 
and vice versa, although this conclusion can be easily reached by a 
cursory examination of the inviscid equations. The damped oscillations 
do not satisfy the inviscid equation all along the real axis; otherwise, 
,they could not take on the proper branch of the logarithm as specified 
in the section "General Study of Small Disturbances in a Nearly Parallel 
Flow Field in a Compressible Fluid." They exhibit a behavior very much 
like that of the vorticity distribution in fully developed turbulence 
flow. For large Reynolds numbers, there is one part of the space where 
the vorticity is highly concentrated; in another part, there is very 
little vorticity. This illustrates the two kinds of limiting behavior 
of a viscous fluid in the limit of infinite Reynolds number:  In one 
part of the field, the inviscid behavior is approached; in another part, 
it becomes highly oscillatory spatially. 
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CONCLUSIONS 

From a study of the stability of the mixing of two parallel streams 
in a gas, the following conclusions may be drawn: 

1. If the relative speed of the two parallel streams exceeds the sum 
of their velocities of sound, subsonic oscillations cannot occur, and 
the mixing region may be expected to be stable with respect to small 
disturbances. 

2. A further necessary condition for the possible occurrence of 
small subsonic disturbances is that somewhere in the field 

where y is a positional coordinate across the stream, p is the den- 
sity of the gas, and w is a dimensionless velocity distribution. This 
condition is usually satisfied for the present class of problems. 

3. If the speed of the flow at such a point is denoted by ws, 
then the field of flow can execute a neutral wavy oscillation having 
a finite wave length and propagating with the speed • c = ws if and 
only if ws is subsonic relative to both streams. There is no other 

possible neutral oscillation. This leads to a more strict condition 
of stability than that given by conclusion 1. 

k.  Under the above conditions, the field of flow can execute 
amplified wavy oscillations having wave lengths longer than that of 
the neutral oscillation. Oscillations having shorter wave lengths are 
damped..  (This specific form of the conclusion was not obtained for 
the boundary layer at a solid surface in NACA TN 1115,,but its validity 
can be shown by the present method.) The extent of amplification in 
such cases is fairly large. 

5. At large Reynolds numbers, the,amplified disturbances are 
essentially free from the effect of viscosity. On the other hand, 
disturbances with finite damping are expected to exhibit a highly 
oscillatory behavior over a finite region in the field of flow. This 
is similar to the structure of the vorticity field in fully developed 
turbulence. 

6. For the case of constant enthalpy with one stream at rest, the 
wave length of the neutral disturbances increases with increasing Mach 
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number in the other stream. The flow becomes completely stable at a 
free-stream Mach number of 1.7- This is more restrictive than the 
value 2.5 obtained by applying conclusion 1 to the present case. 

Massachusetts Institute of Technology 
Cambridge, Mass., July 30, 1952 
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APPENDIX 

SYMBOLS 

The quantities "bearing subscript 1 in the last column are the 
dimensional quantities in the first free stream. Corresponding quan- 
tities in the second stream bear a subscript 2. The quantities with- 
out a prime satisfy the equations of steady motion; those with primes 
satisfy the disturbance equations. 

Reference 
quantities 

Dimensional Dimensionless 
quantities quantities 

Positional coordinates: 

X* X 

y* y = T)/2\/2~ 

Time: 

t* t 

I  = 2\|2V1x*/U1 

I 

Velocity components in directions of x- and y-axes, respectively: 

u* + u*1 w(y)+f(y)ela(x-ct) UX 

■v* + v*1 -a0(y)eia(x-ct) Ux 

Density of gas: 

P* + P*' p(y)+r(y)e
la(x-ct) 

Pressure of gas: 

p* + p*1 p(y)+rt(y)ela(x-ct) 

Pi 

Pi 

Temperature of gas: 

T* + T*' T(y)-K9(y)eicx(x-Ct) Tx 

Coefficient of viscosity of gas: 
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Dimensional 
quantities 

Thermal conductivity: 

k* 

Dimensionless 
quantities 

n/Pr 

Wave number of disturbance: 

a* = 2rt/x* a = 2it/\ 

Phase velocity of disturbance: 

c* c 

Specific heat at constant volume: 

cv 1 

Specific heat at constant pressure: 

Reference 
quantities 

Vl 

Un 

Gas constant per gram: 

.R* 

Reynolds number 

Mach number 

Prandtl number 

7 - 1 

R = Px^l/ji-L 

M-L = U-J^R*^ 

Pr = Cp*i*A* 

Cv 
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TABLE I 

VELOCITY DISTRIBUTIONS IN INCOMPRESSIBLE CASE 

[For definition of symbols, see equations (10), 

(HO, and (15b); v = uVU-H 

(a) For X = 0.2 and 0 = O.098 

n V ij w T) w 

-9.0 O.667 -2.6 0.684 1.4 0.941 
-8.8 _____ -2.4 .689 1.6 .952 
-8.4 _____ -2.2 .695 1.8 .961 
-8.0  __ -2.0 .701 2.0 .969 
-7.6 _____ -1.8 .709 2.2 .976 
-7.2 _____ -1.6 .719 2.4 .982 
-6.8 _____ -1.4 .729 2.6 .986 
-6 A -1.2 .7^1 2.8 .990 
-6.0 -1.0 .754 3.0 • 993 
-5.6 _____ -.8 .768 3.2 • 995 
-5.2 .668 -.6 .784 3-h .996 
-4.8 .668 -.4 .800 3.6 .997 
-4.4 .668 -.2 .816 3-8 .998 
-4.o .669 0 .833 4.0 • 999 
-3.8 .670 .2 .851 4.2 .999 
-3.6 .671 .4 .868 4.4 .999 

-3 A .673 .6 .884 4.6 1.000 

-3.2 .675 .8 .900 4.8 1.000 

-3.0 .677 1.0 .915 5.0 1.000 
-2.8 .680 1.2 .928 
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TABLE I 

VELOCITY DISTRIBUTIONS IN INCOMPRESSIBLE CASE - Continued 

(t>) For X, = 0.4 and 0 = O.3IO 

11 w n w il v 

-9.0 0.429 -2.6 0.470 1.4 0.891 
-8.8 _____ -2.4 .479 1.6 .909 
-8.4 _____ -2.2 .489 1.8 .926 
-8.0 -2.0 .501 2.0 .941 
-7.6 _____ -1.8 .515 2.2 .953 
-7.2 _____ -1.6 .531 2.4 .964 
-6.8 _____ -1.4 .548 2.6 • 972 
-6 .4 _____ -1.2 .567 2.8 • 979 
-6.0 _____ -1.0 .588 3.0 .985 
-5.6 A30 -.8 .611 3.2 .989 
-5.2 .430 -.6 .635 3-4 • 992 
-4.8 .432 -.4 .661 . 3.6 • 994 
-4.4 .434 -.2 .687 3-8 .996 
-k.o .437 0 .714 4.0 • 997 
-3.8 .440 .2 .742 4.2 • 998 
-3.6 .41+3 .4 .769 4.4 • 999 
-3.4 .446 .6 .796 4.6 • 999 
-3.2 .451 .8 .822 4.8 1.000 
-3.0 .456 1.0 .814-7 5.0 1.000 
-2.8 .462 1.2 .870 
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TABLE I 

VELOCITY DISTRIBUTIONS IN INCOMPRESSIBLE CASE - Continued 

(c) For \ =  0.6 and 0 = 0.573 

n w n w T 
1 w 

-9.0 0.250 -2.6 0.319 1.4 0.848 
-8.8 .250 -2.4 • 331 1.6 .873 
-8.4 .250 -2.2 .345 1.8 .896 
-8.0 .250 -2.0 .361 2.0 .915 
-7.6 .250 -1.8 • 379 2.2 • 933 
-7-2 .250 -1.6 .398 2.4 .947 
-6.8 .251 -1.4 .420 2.6 .959 
-6.4 .251 -1.2 .444 2.8 .969 
-6.0 .252 -1.0 .470 3.0 .977 
-5.6 .253 -.8 .498 3.2 .983 
-5.2 .255 -.6 .527 3-h .988 
-4.8 .258 -.4 .559 3-6 • 991 
-4.4 .263 -.2 .591 3-8 • 994 
-4.0 .270 0 .625 4.0 .996 
-3.8 .274 .2 .659 4.2 • 997 
-3-6 .279 .4 .693 4.4 • 998 
-3^ .285 .6 • 727 4.6 • 999 
-3-2 .291 .8 .760 4.8 .999 
-3.0 .299 1.0 .791 5.0 1.000 
-2.8 .308 1.2 .821 
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TABLE I 

VELOCITY DISTRIBUTIONS IN INCOMPRESSIBLE CASE - Continued 

(a) For \  = 0.8 and 0 = 0.860 

n w ^ w n w 

-9.0 0.111 -2.6 0.209 1.1+ ' O.813 
-8.8 .111 -2.1* .221* 1.6 .81*2 
-8.1* .111 -2.2 .21*0 1.8 .869' 
-8.0 .111 -2.0 .258 2.0 • 893 
-7.6- .112 -1.8 .279 2.2 .911* 
-7-2 .112 -1.6 .301 2.1* .932 
-6.8 • 113 -1.1* .326 2.6 .91*7 
-6 A .115 -1.2 .352 2.8 .960 
-6.0 .117 -1.0 .382 3.0 • 970 
-5.6 .120 -.8 .1*13 3.2 • 977 
-5.2 .121+ -.6 .1*1*6 3A .981* 
-1+.8 .129 -.1* .1*81. 3.6 .988 
-k.k .137 -.2 .518 3-8 • 992 
-k.O .11*6 0 .556 i*.o .991* 
-3-8 .152 .2 .591* 1*.2 .996 
-3.6 .    .159 .1* .633 k.k- • 998 
-3 A .167 .6 .672 1*.6 • 999 

.'.-3-2 .175 .8 .709 l*.8 • 999 ■ 
-3.0 .185 1.0 .746 5.0 1.000 
-2.8 .196 1.2 .780 
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TABLE I 

VELOCITY DISTRIBUTIONS IN INCOMPRESSIBLE CASE - Concluded 

(e) For X  = 1.0 and 9  = l.l60 

n w n w n w 

-9.0 0 -2.6 0.127 1.4 O.783 
-8.8 .000 -2.4 •143 1.6 .816 

-8.4 .001 -2.2 .161 1.8 .847 
-8.0 .001 -2.0 .181 2.0 .874 
-7.6 .002 -1.8 .202 2.2 .898 

-7.2 .004 -1.6 .227 2.4 • 919 
-6.8 .006 -1.4 .253 2.6 .937 
-6.1+ .009 -1.2 .282 2.8 .951 
-6.0 .013 -1.0 .313 3.0 .963 
-5.6 .018 -.8 • 347 3.2 .973 
-5.2 .024 -.6 .383 3.4 .980 

-4.8 • 033 -.4 .420 3.6 .986 
-4.4 .042 -.2 .459 3.8 • 990 
-4.0 .055 0 .500 4.0. • 994 
-3-8 .062 .2 .542 4.2 • 996 
-3-6 .070 .4 .584 4.4 .997 
-3-4 • 079 .6 .626 4.6 • 998 
-3.2 .089 .8 -.668 4.8 • 999 
-3.0 .100 1.0 .708 5.0 1.000 
-2.8 .113 1.2 .747 
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TABLE II 

VELOCITY AND TEMPERATURE DISTRIBUTIONS 

IN COMPRESSIBLE CASE 

[One stream at rest; \ = 1; 0 = I.I60J 

(a) M]_ = 0.5 

w w T 

-12.6 
-12.2 
-11.8 
-11. 4 
-11.0 
-10.6 
-10.2 
-9.8 
-9-4 
-9.0 
-8.6 
-8.2 
-7.8 
-7.4 
-7.0 
-6.6 
-6.2 
-5.8 
-5.4 
-5.0 
-4.6 
-4.2 
-3.8 

-3 A 
-3.0 
-2.8 
-2. 
-2. 
-2. 
-2.0 
-1.8 
-1.6 

0 1.050 

.6 

.2 

.001 

.001 

.002 

.003 

.004 

.006 

.009 

.013 

.019 

.025 

• 033 
.043 
.054 
.069 
.086 
.108 
.121 
.136 
.152 
.170 
.190 
.211 
.235 

1.050 

1.049 

1.048 
1.048 

1.047 

-1.4 
-1.2 
-1.0 
-.8 
-.6 
-.4 
-.2 
0 
.2 
.4 
.6 
.8 

1.0 
1.2 
1.4 
1.6 
1.8 
2.0 
2.2 
2.4 
2.6 
2.8 
3.0 
3.4 
3.8 
4.2 
4.6 
5.0 
5.4 
5.6 
6.0 

O.261 
.289 
.320 
.352 
.386 
.423 
.461 
.500 
.540 
.581 
.622 
.662 
.702 
.740 
.776 
.809 
.840 
.868 
.892 
.914 
.932 
.947 
.960 
.978 

.989 
• 995 
.998 
• 999 

1.000 
1.000 
1.000 

047 
046 
045 
044 
043 

1.041 

1.039 
1.038 
1.035 
1.033 
1.031 
1.028 
1.025 
1.023 
1.020 
1.017 
1.015 
1.012 
1.010 
1.008 
1.007 
1.005 
1.004 
1.002 
1.001 
1.001 
1.000 
1.000 
1.000 
1.000 
1.000 
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TABLE II 

VELOCITY AND TEMPERATURE DISTRIBUTIONS 

IN COMPRESSIBLE CASE - Continued 

(b) M1 = 1.0 

1) "w T TJ V T 

-12.6 0 1.200 -1.4 0.282 1.184 
-12.2 -1.2 .309 1.181 
-11.8 -1.0 .336 1.177 
-11.4 -.8 .366 1.173 
-11.0 -.6 .397 1.168' 
-10.6 -.4 .430 1.163 
-10.2 0 1.200 -.2 .465 1.157 
-9-8 .001 0 .500 1.150 
-9.4 .002   .2 .537 1.142 
-9.0 .002 .4 .574 1.134 
-8.6 .004   .6 .611 1.125 
-8.2 .005 .8 .648 1.116 
-7.8 .007 1.0 .685 1.106 
-7.4 .010 1.2 .721 1.096 
-7.0 .014 1.4 .756 1.086 
-6.6 .019 1.6 .789 1.076 
-6.2 .024 1.8 .820 I.O66 
-5.8 .031 2.0 .848 1.056 
-5.4 • 039 2.2 .874 1.047 
-5.0 .048 2.4 .897 1.039 
-4.6 .059 2.6 .918 1.032 
-4.2 .072 1.199 2.8 • 935 1.025 
-3-8 .088 1.198 3-0 .950 1.020 
-3A .108 1.197 3-^ • 971 1.011 
-3.0 .132 1.197 3.8 .985 1.006 
-2.8 .145 I.I96 4.2 • 993 1.003 
-2.6 .160 1.195 4.6 • 997 1.001 
-2.4 .177 1.194 5.0 • 999 1.001 
-2.2 .195 1.192 5.4 1.000 1.000 
-2.0 .214 1.191 5.6 — _ — .._ _____ 
-1.8 .235 1.189 6.0 — — —.._ _____ 
-1.6. .258 1.187 
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TABLE II 

VELOCITY AND TEMPERATURE DISTRIBUTIONS 

IN COMPRESSIBLE CASE - Concluded 

(c) M-L = 1.5 

TJ w T ' f) w T 

-12.6 0 1.450 -1.4 0.310 1.407 
-12.2 .001   -1.2 .33^ 1.400 
-11.8 .001 -1.0 .359 I.392 
-11.4 .002   -.8 .385 1.384. 
-11.0 .002 -.6 .412 I.374 
-10.6 .003 -.4 .440 I.363 
-10.2 ,   .004   -.2 .470 1.351 
-9.8 .006 0 .500 1.338. 
-9.4 .007   .2 .531 1.323 
-9.0 .009 .4 .564 1.307 
-8.6 .012   .6 .596 1.290 
-8.2 .016 .8 .629 1.272 
-7.8 .020   1.0 .662 1.253 
-7-4 .025 1.2 .694 1.233 
-7.0 .030 1.4 .727 1.213 
-6.6 .037 1.449 1.6 .758 1.192 
-6.2 .044 1.449 . 1.8 .788 1.171 
-5.8 .052 1.449   ' 2.0 .817 1.150 
-5.4 .062 1.448 2.2 .844 1.130 
-5.0 • 073 1.448 2.4 .869 1.111 
-4.6 .086 1.447 2.6 .891 1.093 
-4.2 .102 1.445 2.8 • 911 1.076 
-3.8 .120 1.444 3-0 .929 I.O62 
-3^ .142 1.441 3A .957 I.O38 
-3-0 .167 1.438 3-8- .976 . 1.021 
-2.8 .180 1.435 4.2 .988 1.011 
-2.6 .196 1.^33 4.6 • 994 1.005 
-2.4 .212 I.430 5.0 • 998 1.002 
-2.2 .229 1.426 5.4 • 999 1.001 
-2.0 .248    ^ 1.422 5.6 1.000 1.000 
-1.8 .267 1.418 6.0 1.000 1.000 
-1.6 .288 I.413 
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TABLE III 

WAVE SPEEDS OF POSSIBLE NEUTRAL SUBSONIC DISTURBANCES 

[values of ws = u*/^ defined by equation (70)J 

Ml 
X 

0.2 0.4 0.6 0.8 3..0 

0 O.83U 0.732 0.657 0.613 0.576 

.5 .845 .743 .678 .632 .594 

1 

2 

5 

.851 

.878 

• 9^9 

.762 

.823 

.704 

.796 

.66k 

.112 

.633 

.762 

.938 .940 .941 .938 

10 .984 .981 .981 .982 .982 

TABLE IV 

CONDITIONS ASSOCIATED WITH NEUTRAL SONIC DISTURBANCE 

Conditions 
X • 

0.2 O.k 0.6 0.8 1.0 

Ml >10 k.O 2.7 2.0 1.7 

M2 >1.92 • 90 .kk .167 0 

c «1 .91 .82 .78 .73 
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TABLE V 

WAVE NUMBER AND AMPLITUDE OF NEUTRAL OSCILLATIONS 

fy = n/2^2, e = 1.160J 

(a) Wave number of neutral oscillations 
for various Mach, numbers 

Mx Wave number,    aß 

0 

• 5 

1.0 

1.5 

0A59 

.k5k 

• 37^ 

.324 
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TABLE V 

WAVE NUMBER AND AMPLITUDE OF NEUTRAL OSCILLATIONS - Continued 

(b) Amplitude of neutral oscillations 
for M1 = 0 

y 0 d0/dy y 0 <10/dy y 0 d0/dy 

-64 0.001 0.001 -1.0 0.297 0.269 2.2 0.107 -0.107 
-6.2 .001 .001 -.9 .325 .281 24 .087 -.087 
-6.0 .001 .001 -.8 .351* .291 2.6 .071 -.071 
-5.8 .002 .002 -.7 .383 .296 2.8 .058 -.058 
-5.6 .002 .002 -.6 412 .291* 3.0 .01*8 -.01*8 
-5.1* .002 .003 -.5 41*2 .286 3.2 .039 ■   -,039 
-5.2, .003 .003 -4 469 .269 34 .032 -.032 
-5.0 .001* .001* -•3 495 .21*3 3-6 .026 -.026 
-1*.8 .005 .005 -.2 .518 .206 3-8 .022 -.022 
-1*.6 .006 .007 -.1 .536 .159 i*.o .018 .   -.018 
-1+4 .008 .008 0 .51*9 .103 1*.2 .011+ -.011* 
-1*.2 .009 .011 .1 .556 .01*0 1*4 .012 -.012 
■4.0 .012 .013 .2 .557 -.028 k.6 .010 -.010 
-3.8. .015 .016 • 3 .550 -.097 1+.8 .008 -.008 
-3.6 .018 .021 4 .537 -.162 5.0 .007 -.007 
-34 • 023 .026 .5 .518 -.220 5.2 .005 -.005 
-3-2 .029 .032 .6 .1*91+ -.267 54 .001* -.001* 
-3.0 .O36 .01*0 .7 465 -.303 5.6 .001* -.001+ 
-2.8 .01*5 .050 .8 .1*31* -.325 5.8 .003 -.003 
-2.6 .056 .062 • 9 .1*01 -•331* 6.0 .002 -.002 
-24 .070 .077 1.0 .367 -.332 6.2 .002 -.002 
-2.2 .O87 .095 1.1 .335 -.322 64 .002 -.002 
-2.0 .108 .116 1.2 •303 -.305 6.6 .001 -.001 
-1.9 .120 .129 1.3 .271* -.283 6.8 .001 -.001 
-1.8 .131* .11*2 14 .21+7 -.260 7.0 .001 -.001 
-1.7 .11*9 .156 1.5 .222 -.237 
-1.6 .165 .172 1.6 .199 -.213 
-1.5 .183 .188 1.7 .179 -.192 
-14 .202 .201* 1.8 .l6l -.171 
-1.3 .221* .221 1.9 .11*5 -.152 
-1.2 .21*7 .238 2.0 .131 -.135 
-1.1 .271 .251* 2.1 .118 -.113 
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. TABLE V 

r 

WAVE NUMBER AND AMPLITUDE OF NEUTRAL OSCILLATIONS 

(c) Amplitude of neutral-oscillations 

- Concluded 

■ 

for    Mj_ = 1 

y 0 djZS/dy y 0 d0/dy • y 0. d0/dy 

-7-4 0.003 0.003 -0.3 0.551 0.284 2.9 0.122 -O.IO6 
-7-0 .005 .003 -.2 .579 • 273 3.0 .112 -.098 
-6.6 .006 .005 -.1 .605 .254 3.1 .103 -.090 
-6.2 .008 .006 0 .629 .227 3-2 .094 - .082 , 
-5.8 .011 .008 .1 .650 .190 3-3 .  .087 -.076 
-5.4 .015 .011 .2 .667 .142 3-4 • 079 .   -.070 
-5.0 .020 .015 • 3 .678 .085 3-6 .067 -.059 
-4.6 .026 .020 .4 .684 .020 3.8 .056 -.049 

- 

-4.2 .035 .026 .5 .682 -.050 4.0 .048 -.042 
a -3-8 .048 .035 .6 .674 -.121 4.2 .040 •   -.O35 

-3-h .064 .047 .7 .658 -.189 4.4 .034 -.030 
-3.0 .086 .063 .8 .636 -.249 4.6 .029 -.025 

* -2.6 .115 .084' • 9 .609 -.297 4.8 .024 -.021 
-2.2 .153 .112 1.0 .577 -.331 5.0 .020 -.018 
-2.0 .177 .129 1.1 .543 -.351 5.2 .017 -.015 
-1.9 .191 .138 1.2 .507 -.359 5.4 .014 -.013 
-1.8 .205 .148 1-3 .471 -•3.56 5.6 .012 -.011 
-1.7 .220 .158 1.4 .436 -344 5.8 .010 -.009 
-1.6 • 237 .169 1.5 .403 -.328 6.0 .009 -.008 - 
-1.5 .254 .180 1.6 • 371 -.308 6.2 .007 -.006 
-1.4 • 273 .192 1.7 • 341 -.288 
-1.3 .292 .204 1.8 •3-3 1-.267 
-1.2 "    .313 .217 1.9. .288 -.246 
-1.1 •336 .229 2.0 .264 ' -.227 ' , « 
-1.0 .359 .242 2.1 .242 -.209 
-•9 •   -384 .254 2.2 .222 -.192 
-.8 .410 .265 2.3 .204 .-.177 

1 -.7 .437 .275 2.4 .187 -.163 
-.6 .465 .282 2.5 .171 -.150 ' 
-.5 .493 .287 2.6 .157 -.137 
-.4 .522 .288 .2.7 .144 -.126 

2.8 .132 -.116 

\^ MACA^ 
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w .5 

Figure 1.- Velocity distributions in the incompressible case. 

y* Ui - U2 
T] = ; \ = — -. 

u*. w = —; 
Ui 

/v?] ui + u2 
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1.0 

w     .5 
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1 1 1 1 1 1 1 1 <1 -   1^- -—I 

- 

- M,= l.5 I     M,. l.o/ M,=0.5> M^O-7 
■       - 

- ..- 

- - 

- 

-' 
77=0 fv-° 17=0 /17O - 

- - 

- 

- - "^0? CA/" ! 

- 
1   - ■   1 ■"-f— "n— 1 1 1 1 1 

-12 -10 -8 -6-4-20246 
17    (UP TO AN ADDITIVE  CONSTANT) 

8 10 12 14 

(a) Velocity distributions, v = U*/U]_. 

Figure 2.- Velocity and temperature distributions in compressible case. 

t] = 
U1"U2 

iAi**/Ui 
M2 = 0. 

;   X = |j— = 1.0; M]_, Mach number of moving stream. 
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Figure k.-  Stable zones for isoenergetic case.  7 = l.UO; M]_ and M2, 
Mach numbers of two streams;  ws, wave speed of neutral disturbance; 
Ui and U2, velocities of two streams. 
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lm(y)=0 

(a) c±  > 0. 
•Im(y)=0 

fa) c± =  0. 

lm(y)=0 

(c) C1< 

Figure 5.- Geometry of critical curves for asymptotic solutions, 
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y 

(a) For Mx = 0 and aß =  0.1+59. 

.8 

*  _ 

— 

- 

— \NA CA^" 

— 

1 1 1 1 1 1 1 . 1 1 1 
-4.0  -3.0  -2.0  -1.0 0    1.0   2.0   3.0   4.0   5.0 

y 

(b) For Mx = 0.5 and a0 = 0.454. 

Figure 6.- Amplitude of neutral oscillations, y = -i- T) = — 7   • 
21/2 2v/2 /v1x*/u1 

$,   amplitude; a, wave number; 6,  momentum-boundary-layer thickness; 
0 = I.160 in Ti-units. 
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(b) For Mi = 1. 

Figure 7-- Extent of amplification at infinite Reynolds number. 
2n .■  ,___.,.,_ ......       1      1    y* a, wave number; —, wave length in y-units; y = -^—  T) = —       , 

2/2    2]ß /vxx*/Ui 
R, Reynolds number; c,  dimensionless complex wave speed (cr + icA. 

NACA-Langley - 1-29-53 - 1000 
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